Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Foods ; 13(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38472845

ABSTRACT

In order to improve the stability of bovine plasma protein-carboxymethyl cellulose composite gels and to expand the utilization of animal by-product resources, this study investigated the impact of different ultrasound powers (300, 400, 500, 600, and 700 W) and ultrasound times (0, 10, 20, 30, and 40 min) on the functional properties, secondary structure and intermolecular forces of bovine plasma protein-carboxymethyl cellulose composite gel. The results showed that moderate ultrasonication resulted in the enhancement of gel strength, water holding capacity and thermal stability of the composite gels, the disruption of hydrogen bonding and hydrophobic interactions between gel molecules, the alteration and unfolding of the internal structure of the gels, and the stabilization of the dispersion state by electrostatic repulsive forces between the protein particles. The content of α-helices, ß-turns, and ß-sheets increased and the content of random curls decreased after sonication (p < 0.05). In summary, appropriate ultrasound power and time can significantly improve the functional and structural properties of composite gels. It was found that controlling the thermal aggregation behavior of composite gels by adjusting the ultrasonic power and time is an effective strategy to enable the optimization of composite gel texture and water retention properties.

2.
J Inflamm Res ; 17: 737-754, 2024.
Article in English | MEDLINE | ID: mdl-38348277

ABSTRACT

Background: In recent years, the immunotherapy of lung adenocarcinoma has developed rapidly, but the good therapeutic effect only exists in some patients, and most of the current predictors cannot predict it very well. Tumor-infiltrating macrophages have been reported to play a crucial role in lung adenocarcinoma (LUAD). Thus, we want to build novel molecular markers based on macrophages. Methods: By non-negative matrix factorization (NMF) algorithm and Cox regression analysis, we constructed macrophage-related subtypes of LUAD patients and built a novel gene signature consisting of 12 differentially expressed genes between two subtypes. The gene signature was further validated in Gene-Expression Omnibus (GEO) datasets. Its predictive effect on prognosis and immunotherapy outcome was further evaluated with rounded analyses. We finally explore the role of TRIM28 in LUAD with a series of in vitro experiments. Results: Our research indicated that a higher LMS score was significantly correlated with tumor staging, pathological grade, tumor node metastasis stage, and survival. LMS was identified as an independent risk factor for OS in LUAD patients and verified in GEO datasets. Clinical response to immunotherapy was better in patients with low LMS score compared to those with high LMS score. TRIM28, a key gene in the gene signature, was shown to promote the proliferation, invasion and migration of LUAD cell. Conclusion: Our study highlights the significant role of gene signature in predicting the prognosis and immunotherapy efficacy of LUAD patients, and identifies TRIM28 as a potential biomarker for the treatment of LUAD.

3.
Food Chem X ; 20: 100891, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144859

ABSTRACT

The water distribution have a profound influence on meat quality, and proteins play a critical role in water distribution. The water distribution detected with proton NMR and its relationship with protein related properties were investigated. Three populations of water were detected: bound water (T21, P21), immobilized water (T22, P22), and free water (T23, P23). The decreased T22 and T23 indicated an increase in water-holding capacity in both muscles from 3 days of aging. The P22 in cattle was higher than that in yak and the P23 in cattle was lower than that in yak, suggesting that cattle exhibited a greater water-holding capacity compared to yak. Moreover, postmortem aging affected muscle protein oxidation, denaturation, and degradation. Correlation analysis suggested that protein oxidation and denaturation caused muscle water loss and protein degradation could allow the muscle to retain water. It provides a basis for the optimization of quality of meat and products.

4.
Food Chem X ; 20: 100973, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144775

ABSTRACT

Longan seeds, rich in phenolic compounds with antioxidant properties, are an underestimated by-product of longan processing. Polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic and mutagenic, are produced during the cooking of meat products at high temperatures. The effects of different concentrations of longan seed extract (LSE, 0.2, 0.6, 1.0 mg/mL) on the formation of PAHs and muscle oxidation in mutton kebabs were investigated. Mutton kebabs were baked at 150, 200, 250 °C for 20 min, respectively, and the contents of PAHs, the degree of lipid and protein oxidation were evaluated. The results showed that LSE exhibited positive effects in inhibiting total PAHs formation (range from 14.9 to 48.8 %), decreasing the thiobarbituric acid reactive substances (TBARS) values (range from 17.1 to 39.1 %), reducing carbonyl content (range from 22.0 to 51.2 %) and increasing sulfhydryl content (range from 18.6 to 51.8 %). This study provided a guidance and potential solution for reducing the content of PAHs and muscle oxidation levels in baked meat.

5.
Foods ; 12(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37893771

ABSTRACT

In this study, based on the evaluation of fishy value and sensory evaluation, this study determined that soaking in a 1% salt solution for 60 min had a significant impact on the deodorization of beef liver (p < 0.05). The results showed that salt infiltration promoted the release of fishy substances, improving the edible and processing performance of beef liver. The identification of flavor compounds in raw and roasted beef liver via GC-IMS implies that (E)-2-octenal-M, (E)-3-penten-2-one-M, ethyl acetate-M, ethyl acetate-D, and methanethiol are closely related to improving the flavor of beef liver; among them, (E)-2-octenal-M, (E)-3-penten-2-one-M, and methanethiol can cause beef liver odor, while nonanal-M, octanal-M, benzene acetaldehyde, n-hexanol-D, butyl propanoate-M, heptanal-D, heptanal-M, and 3-methylthiopropanal-M had significant effects on the flavor formation of beef liver steak. The determination of reducing sugars revealed that salt soaking had no significant effect on the reducing sugar content of beef liver, and the beef liver steak was significantly reduced (p < 0.05), proving that reducing sugars promoted the formation of beef liver steak flavor under roasting conditions. Fatty acid determination revealed that salt soaking significantly reduced the content of polyunsaturated fatty acids in beef liver (p < 0.05), promoting the process of fat degradation and volatile flavor production in the beef liver steak. Salt plays a prominent role in salting-out and osmosis during deodorization and flavor improvement. Through controlling important biochemical and enzymatic reactions, the release of flavor substances in a food matrix was increased, and a good deodorization effect was achieved, which lays a foundation for further research on the deodorization of beef liver and the flavor of beef liver steak.

6.
iScience ; 26(10): 108055, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37854704

ABSTRACT

Small nucleolar RNA host genes (SNHGs) are a special family of long non-coding RNAs (lncRNAs), which not only function in a way similar to other lncRNAs but also influence the intracellular level of small nucleolar RNAs to modulate cancers. However, the features of SNHGs and their role in the prognosis and immunotherapeutic response of human cancer have not been explored. We found that SNHGs were commonly deregulated and correlated with patient survival in various cancers. The critical role of DNA methylation and somatic alterations on deregulation was also identified. SNHG family score was significantly associated with survival, multiple tumor characteristics, and tumor microenvironment. SNHG-related risk score could serve as a prognostic and immunotherapeutic response biomarker based on multiple databases. This study emphasizes the potential of SNHGs as biomarkers for prognosis and immunotherapeutic response, enabling further research into the immune regulatory mechanism and therapeutic potentials of SNHGs in cancer.

7.
Foods ; 12(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37628091

ABSTRACT

Beef skin gelatin can be used as a good substitute for animal fat in meat patties. In this paper, the effect of different parameters on low-fat beef patties with cowhide gelatin substituted for beef fat (0, 25%, 50%, 75%, 100%) prepared by ultra-high pressure assisted technology was investigated by texture, cooking loss, and sensory scores. The beef patties were also stored at 0-4 °C for 0, 7, 14, 21, and 28 d. The differences and changing rules of fatty acid and amino acid compositions and contents of beef patties with different fat contents were investigated by simulating gastrointestinal digestion in vitro. The optimal process formulation of low-fat beef patties with cowhide gelatin was determined by experimental optimization as follows: ultra-high pressure 360 MPa, ultra-high of pressure time of 21 min, NaCl addition of 1.5%, compound phosphate addition of 0.3%. The addition of cowhide gelatin significantly increased monounsaturated fatty acids, polyunsaturated fatty acids, amino acid content, and protein digestibility of beef patties (p < 0.05). Moreover, with the extension of storage time, the content of saturated fatty acids was significantly higher (p < 0.05), the content of monounsaturated and polyunsaturated fatty acids was significantly lower (p < 0.05), the content of amino acids was significantly lower (p < 0.05), and protein digestibility was significantly lower (p < 0.05) under all substitution ratios. Overall, beef patties with 75% and 100% substitution ratios had better digestibility characteristics. The results of this study provide a theoretical basis for gelatin's potential as a fat substitute for beef patties and for improving the quality of low-fat meat products.

8.
Foods ; 12(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37509781

ABSTRACT

In this study, fuzzy mathematics and response surface modeling were applied to optimize the preparation process of beef liver paste and characterize the proximate composition, sensory and physicochemical qualities, and in vitro simulated digestive properties while refrigerated at 0-4 °C (0, 3, 7, 15, 30, 45, and 60 days). The results showed that the optimal preparation process was 4.8% potato starch, 99.4% water, 10.2% olive oil, and a 3:2 ratio of chicken breast and beef liver. The beef liver paste prepared contained essential amino acids for infants and children, with a protein content of 10.29 g/100 g. During storage, the pH of the beef liver paste decreased significantly (p < 0.05) on day 7, texture and rheological properties decreased significantly after 30 days, a* values increased, L* and b* values gradually decreased, and TVB-N and TBARS values increased significantly (p < 0.05) on day 7 but were below the limit values during the storage period (TVB-N value ≤ 15 mg/100 g, TBARS value ≤ 1 mg/Kg). In vitro simulated digestion tests showed better digestibility and digestive characteristics in the first 15 days. The results of this study provide a reference for the development of beef liver products for infant and child supplementation.

9.
Exp Ther Med ; 26(2): 370, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37415839

ABSTRACT

Suppressor of cytokine signaling 2 (SOCS2) plays an essential role in a number of physiological phenomena and functions as a tumor suppressor. Understanding the predictive effects of SOCS2 on non-small cell lung cancer (NSCLC) is urgently needed. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to assess SOCS2 gene expression levels in NSCLC. The clinical significance of SOCS2 was evaluated through Kaplan-Meier curve analysis and the analysis of related clinical factors. Gene Set Enrichment Analysis (GSEA) was used to identify the biological functions of SOCS2. Subsequently proliferation, wound-healing, colony formation and Transwell assays, and carboplatin drug experiments were used for verification. The results revealed that SOCS2 expression was low in the NSCLC tissues of patients in TCGA and GEO database analyses. Downregulated SOCS2 was associated with poor prognosis, as determined by Kaplan-Meier survival analysis (HR 0.61, 95% CI 0.52-0.73; P<0.001). GSEA showed that SOCS2 was involved in intracellular reactions, including epithelial-mesenchymal transition (EMT). Cell experiments indicated that knockdown of SOCS2 caused the malignant progression of NSCLC cell lines. Furthermore, the drug experiment showed that silencing of SOCS2 promoted the resistance of NSCLC cells to carboplatin. In conclusion, low expression of SOCS2 was associated with poor clinical prognosis by effecting EMT and causing drug resistance in NSCLC cell lines. Furthermore, SOCS2 could act as a predictive indicator for NSCLC.

10.
Food Chem ; 427: 136737, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37390736

ABSTRACT

This study aimed to investigate the effects of muscle-specific oxidative stress on phosphorylation and its relationship with mitochondrial dysfunction, muscle oxidation, and apoptosis of porcine PM (psoas major) and LL (longissimus lumborum) during the first 24 h postmortem. The global phosphorylation level decreased and the mitochondrial dysfunction, oxidation level, and apoptosis increased significantly at 12 h postmortem compared with 2 h postmortem, suggesting that lower phosphorylation level was related to more mitochondrial dysfunction and apoptosis during the early postmortem, regardless of muscle type. PM exhibited a higher global phosphorylation level but showed greater mitochondrial dysfunction, oxidation level, and apoptosis than LL, regardless of aging time. The increased mitochondrial dysfunction and oxidative stress accelerated apoptosis, but their relationship with phosphorylation was different in various muscle types at different aging times. These findings provide insight regarding the roles of coordinated regulation of phosphorylation and apoptosis in development of quality of different muscles.


Subject(s)
Muscle, Skeletal , Red Meat , Animals , Swine , Muscle, Skeletal/metabolism , Phosphorylation , Red Meat/analysis , Apoptosis , Oxidative Stress , Mitochondria/genetics , Mitochondria/metabolism
11.
Heliyon ; 9(4): e15319, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37089398

ABSTRACT

Background: Pulmonary neuroendocrine tumors, including small cell lung cancer (SCLC) and non-small cell neuroendocrine tumor (NSCLC-NET), have obvious heterogeneity. The comparison between SCLC and NSCLC-NET, and prognostic nomogram of resected NSCLC-NET have not been performed. Methods: We retrieved data from SEER database. The incidence and prognostic factors were compared between SCLC and NSCLC-NET. By Cox regression, we constructed prognostic nomogram of resected NSCLC-NET. The nomogram was evaluated by ROC, calibration plot and decision curve analysis (DCA) and compared with 8th TNM staging system. A Chinese cohort was used for external validation. Results: The age-adjusted incidence of SCLC declined after 1991 but the incidence of NSCLC-NET continuously rose. Patients with typical carcinoid had the best prognosis in both overall survival and lung cancer specific survival, followed by atypical carcinoid, large cell neuroendocrine tumor and SCLC after operation. Patients receiving sleeve resection in NSCLC-NET had longer survival but segmental resection was more recommended in SCLC. High-smoking index was associated with worse overall survival in both SCLC and NSCLC-NET. Histological subtype, age, surgery type, N, M stage and chemotherapy were independent prognostic factors and used to construct prognostic nomogram of resected NSCLC-NET. The nomogram performed well with good discrimination, calibration and clinical usefulness, which was validated by a Chinese cohort (1, 3, 5-year AUC: SEER cohort 0.873, 0.901, 0.875; Chinese cohort 0.867, 0.892, 0.874). Compared to the 8th staging system, the nomogram had higher C-index (0.87 vs 0.728, P < 0.001), clinical usefulness, increasing AUC value over time and improved 68%. Conclusion: The prognostic nomogram of resected NSCLC-NET performed better than the 8th TNM staging system. It may have certain value in risk stratification and survival prediction of patients with resected NSCLC-NET and help clinicians to take measures for high-risk patients in advance.

12.
Front Oncol ; 12: 1014997, 2022.
Article in English | MEDLINE | ID: mdl-36531058

ABSTRACT

With the development of technologies, multiple primary lung cancer (MPLC) has been detected more frequently. Although large-scale genomics studies have made significant progress, the aberrant gene mutation in MPLC is largely unclear. In this study, 141 and 44 lesions from single and multiple primary lung adenocarcinoma (SP- and MP-LUAD) were analyzed. DNA and RNA were extracted from formalin-fixed, paraffin-embedded tumor tissue and sequenced by using the next-generation sequencing-based YuanSu450TM gene panel. We systematically analyzed the clinical features and gene mutations of these lesions, and found that there were six genes differently mutated in MP-LUAD and SP-LUAD lesions, including RBM10, CDK4, ATRX, NTRK1, PREX2, SS18. Data from the cBioPortal database indicated that mutation of these genes was related to some clinical characteristics, such as TMB, tumor type, et al. Besides, heterogeneity analysis suggested that different lesions could be tracked back to monophyletic relationships. We compared the mutation landscape of MP-LUAD and SP-LUAD and identified six differentially mutated genes (RBM10, CDK4, ATRX, NTRK1, PREX2, SS18), and certain SNV loci in TP53 and EGFR which might play key roles in lineage decomposition in multifocal samples. These findings may provide insight into personalized prognosis prediction and new therapies for MP-LUAD patients.

13.
Food Chem X ; 16: 100466, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36225213

ABSTRACT

Reactive oxygen species (ROS) affect meat quality through multiple biochemical pathways. To investigate the effect of ROS on postmortem glycolysis and tenderness of bovine muscle, ROS content, glycolytic potential, glycolysis rate-limiting enzyme activities, expression of hypoxia-inducible factor-1α (HIF-1α), phosphatidylinositol 3-kinase (PI3K), serine-threonine kinase (AKT), phosphorylated AKT (p-AKT), and tenderness were determined in the H2O2 group and control group. Results showed that the H2O2 group exhibited significantly higher ROS content within 48 h, coupled with increased glycolytic potential, pH decline, hexokinase (HK), and phosphofructokinase activities (PFK) early postmortem. These were attributed to ROS-induced PI3K/AKT signaling pathway activation and resultant HIF-1α accumulation. Moreover, shear force in the H2O2 group reached the peak 12 h earlier and decreased obviously after 24 h, accompanied by a significantly higher myofibril fragmentation index (MFI). These findings suggested that ROS drive HIF-1α accumulation by activating PI3K/AKT signaling pathway, thereby accelerating glycolysis and tenderization of postmortem bovine muscle.

14.
Heliyon ; 8(10): e10866, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36217463

ABSTRACT

Background: Amino acid metabolism participates in forming immunosuppressive tumor microenvironment. Amino acid transporters (AATs), as a gate for admission, remains to be studied. Materials and methods: We identified LUAD-specific prognostic AATs, SLC7A5 by differential expression analysis, logistic regression, machine learning, Kaplan-Meier analysis, AUC value filtrating and Cox regression. Then differential expression and distribution of SLC7A5 were depicted. Copy number variation, DNA methylation, transcriptional factors and ceRNA network were investigated to explore potential mechanism causing differential expression. The prognostic and clinical relation were evaluated by Kaplan-Meier analysis, Cox regression analysis. GSEA and GSVA were used to analyze altered pathways between SLC7A5 high- and low-groups. The expression of HLA-related genes and immune checkpoint genes, and immune cells infiltration were detected. SLC7A5 expression in immune cells was evaluated by single-cell sequencing data. IPS and an independent immunotherapy cohort assessed response rates of patients with distinct SLC7A5 expression. Proliferation assay and wound healing assay validated the effects of SLC7A5 on proliferation and migration of LUAD cells. Western blotting and cell viability assays were performed to detect mTORC1 pathway activity and sensitivity to rapamycin. Results: SLC7A5 was a LUAD-specific prognostic AAT and had significant differential expression in transcription and translation level. Methylation levels of cg00728300, cg00858400, cg12408911, cg08710629 were negative correlation with SLC7A5 expression. FOXP3 and TFAP2A were possible transcription factors and miR-30a-5p, miR-184, miR-195-5p may target SLC7A5 mRNA. SLC7A5 high-expression indicated poor prognosis and was an independent prognostic factor. mTORC1, cell cycle, DNA damage repair, response to reactive oxygen, angiogenesis, epithelial-mesenchymal transition (EMT) and various growth factors signaling pathways were activated in SLC7A5 high-expression group. Interestingly, SLC7A5 high-expression group had less immune-related genes expression and immune cells infiltration. Single-cell sequencing data also suggested SLC7A5 was downregulated in various T cells, especially effector T cells. Moreover, high SLC7A5 expression indicated poor immunotherapy efficacy and higher sensitivity to inhibitors of mTORC1 pathway, cell cycle and angiogenesis. SLC7A5 deficiency abrogated proliferation, migration and mTORC1 pathway activity. Conclusions: In summary, as a LUAD-specific prognostic AAT, SLC7A5 is involved in activation of multiple oncogenic pathways and indicates poor prognosis. Moreover, SLC7A5 may participate in forming immunosuppressive TME and is associated with low response of immunotherapy. SLC7A5 is promising to be a new diagnostic and prognostic biomarker and therapeutic target in LUAD.

15.
Food Chem X ; 15: 100434, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36211786

ABSTRACT

The effects of low doses of sodium nitrite on yak meat colouring, myoglobin oxygenation status, myoglobin aggregation and myoglobin structure were evaluated using Fourier transform infrared spectroscopy, laser micro-Raman spectroscopy and liquid chromatography-electrospray ionization tandem mass spectrometry. The results showed that the yak meat redness value increased steadily relative to that of the control after the addition of low dose sodium nitrite. The nitrosomyoglobin level gradually increased and was significantly higher in the sodium nitrite-treated group than in the control group. The secondary structures were also transformed. The Cα-N bond extended and then contracted, the area of the haem core decreased and then increased and the frequency of contraction increased. A total of 34 nitrosylated peptides were identified, of which 15 were stable and 19 were unstable. These findings show that low doses of sodium nitrite facilitated the dynamic transformation of the myoglobin nitrosylated peptide fragment, which in turn preserved the colour of the meat.

16.
Front Immunol ; 13: 960738, 2022.
Article in English | MEDLINE | ID: mdl-36032135

ABSTRACT

Background: Glutamine (Gln) metabolism has been reported to play an essential role in cancer. However, a comprehensive analysis of its role in lung adenocarcinoma is still unavailable. This study established a novel system of quantification of Gln metabolism to predict the prognosis and immunotherapy efficacy in lung cancer. Further, the Gln metabolism in tumor microenvironment (TME) was characterized and the Gln metabolism-related genes were identified for targeted therapy. Methods: We comprehensively evaluated the patterns of Gln metabolism in 513 patients diagnosed with lung adenocarcinoma (LUAD) based on 73 Gln metabolism-related genes. Based on differentially expressed genes (DEGs), a risk model was constructed using Cox regression and Lasso regression analysis. The prognostic efficacy of the model was validated using an individual LUAD cohort form Shandong Provincial Hospital, an integrated LUAD cohort from GEO and pan-cancer cohorts from TCGA databases. Five independent immunotherapy cohorts were used to validate the model performance in predicting immunotherapy efficacy. Next, a series of single-cell sequencing analyses were used to characterize Gln metabolism in TME. Finally, single-cell sequencing analysis, transcriptome sequencing, and a series of in vitro experiments were used to explore the role of EPHB2 in LUAD. Results: Patients with LUAD were eventually divided into low- and high-risk groups. Patients in low-risk group were characterized by low levels of Gln metabolism, survival advantage, "hot" immune phenotype and benefit from immunotherapy. Compared with other cells, tumor cells in TME exhibited the most active Gln metabolism. Among immune cells, tumor-infiltrating T cells exhibited the most active levels of Gln metabolism, especially CD8 T cell exhaustion and Treg suppression. EPHB2, a key gene in the model, was shown to promote LUAD cell proliferation, invasion and migration, and regulated the Gln metabolic pathway. Finally, we found that EPHB2 was highly expressed in macrophages, especially M2 macrophages. It may be involved in the M2 polarization of macrophages and mediate the negative regulation of M2 macrophages in NK cells. Conclusion: This study revealed that the Gln metabolism-based model played a significant role in predicting prognosis and immunotherapy efficacy in lung cancer. We further characterized the Gln metabolism of TME and investigated the Gln metabolism-related gene EPHB2 to provide a theoretical framework for anti-tumor strategy targeting Gln metabolism.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Glutamine , Humans , Immunotherapy , Prognosis , Tumor Microenvironment
17.
J Surg Res ; 279: 338-351, 2022 11.
Article in English | MEDLINE | ID: mdl-35810551

ABSTRACT

INTRODUCTION: The rarity of primary pulmonary synovial sarcoma (PPSS) and the lack of prospective clinical trials resulted in poorly understood treatment modality and clinical outcomes. This study aimed to better understand PPSS based on patients from the Surveillance, Epidemiology, and End Results database. MATERIALS AND METHODS: Clinical and survival data of PPSS patients who were diagnosed during 1989 through 2016 and retrieved from the Surveillance, Epidemiology, and End Results database were studied. Kaplan-Meier analyses and Cox proportional hazards model were applied to evaluate the overall survival (OS) and disease-specific survival (DSS) of PPSS patients. RESULTS: A total of 122 patients with PPSS were included (median age: 50 y). PPSS accounted for 4.5% (122/2741) of total primary synovial sarcoma. Most of the patients were diagnosed as poor or undifferentiated grade (52.0% and 34.0%). Cancer-directed surgery was performed for 74.4% of PPSS patients and 28.2% of patients received radiotherapy. The 1-year, 3-year, 5-year, and 10-year OS rates of PPSS patients were 75.4%, 50.8%, 41.8%, and 39.3%, respectively. Cancer-directed surgery was shown to improve the survival of PPSS patients with localized or regional stage (P < 0.05), yet surgical resection did not prolong the OS and DSS of patients with distant stage (P > 0.1). Postoperational radiotherapy was associated with shortened survival time (P < 0.05). PPSS patients who received lobectomy had statistically prolonged OS and DSS than those with pneumonectomy (P < 0.001). CONCLUSIONS: PPSS is a rare and special subtype of synovial sarcoma. Treatment with lobectomy or sublobar resection alone may contribute to a superior prognosis compared with other managements.


Subject(s)
Lung Neoplasms , Sarcoma, Synovial , Humans , Kaplan-Meier Estimate , Lung Neoplasms/surgery , Middle Aged , Prognosis , Proportional Hazards Models , Retrospective Studies , SEER Program , Sarcoma, Synovial/surgery
18.
PeerJ ; 9: e12536, 2021.
Article in English | MEDLINE | ID: mdl-34900441

ABSTRACT

As an innate feature of human beings, gender differences have an influence on various biological phenotypes, yet it does not attract enough attention in genomics studies. The prognosis of multiple carcinomas usually exhibits a favorable ending for female patients, but the neglect of gender differences can cause serious bias in survival analysis. Enhancer RNAs (eRNAs) are mostly downstream of androgens or estrogen. The present study was aimed to screen eRNAs in patients with non-small-cell lung cancer. The findings revealed that eRNA TBX5-AS1 was expressed differently between female and male patients. Meanwhile, its prognostic significance appeared only in male patients with squamous cell carcinoma (SCC) type. The Gene Set Enrichment Analysis proved that the expression level of TBX5-AS1 increased following the activation of the androgen signaling pathway. In pan-cancer analysis, the prognostic prediction based on gender grouping obtained more meaningful results, and the synergy between TBX5-AS1 and its homologous target was more consistent. Furthermore, immunity variations between sexes prompted us to explore the role that TBX5-AS1 played in tumor microenvironment and immunotherapy. The robust evidence proved that male patients with high expression of TBX5-AS1 possessed a malignant immune microenvironment and urgently needed immune checkpoint inhibitor treatment. In conclusion, TBX5-AS1 may be one of the strongest candidates to predict prognosis for male patients with SCC and provide a reference for immunotherapy.

19.
Front Immunol ; 12: 547333, 2021.
Article in English | MEDLINE | ID: mdl-34394068

ABSTRACT

Adenocarcinoma (AD) and squamous cell carcinoma (SCC) are both classified as major forms of non-small cell lung cancer, but differences in clinical prognoses and molecular mechanisms are remarkable. Recent studies have supported the importance of understanding immune status in that it influences clinical outcomes of cancer, and immunotherapies based on the theory of "immune editing" have had notable clinical success. Our study aimed to identify specific long non-coding (lnc) RNAs that control key immune-related genes and to use them to construct risk models for AD and SCC. Risk scores were used to separate patients into high- and low-risk groups, and we validated the prognostic significance of both risk scores with our own cohorts. A Gene Set Enrichment Analysis suggested that the immune responses of patients in the AD high-risk group and the SCC low-risk group tended to be weakened. Evaluation of immune infiltration revealed that the degree of infiltration of dendritic cells is of particular importance in AD. In addition, prediction of responses to immune checkpoint inhibitor (ICI) treatments, based on the T Cell Immune Dysfunction and Exclusion and immunophenoscore models, indicated that deterioration of the immune microenvironment is due mainly to T cell exclusion in AD patients and T cell dysfunction in SCC patients and that high-risk patients with SCC might benefit from ICI treatment. The prediction of downstream targets via The Cancer Proteome Atlas and RNA-seq analyses of a transfected lung cancer cell line indicated that the lncRNA LINC00996 is a potential therapeutic target in AD.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Models, Immunological , RNA, Long Noncoding/genetics , T-Lymphocytes/immunology , A549 Cells , Adenocarcinoma/immunology , Adenocarcinoma/mortality , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/mortality , Cellular Senescence/genetics , Cohort Studies , Humans , Immunity/genetics , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Molecular Targeted Therapy , RNA, Long Noncoding/immunology , Risk , Survival Analysis , Tumor Microenvironment
20.
Ultrason Sonochem ; 70: 105345, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32932225

ABSTRACT

The objective of this study was to assess the effects of ultrasound-assisted thawing (UAT) on the quality of longissimus dorsi muscles from white yak meat (WYM). Ultrasonic power levels of 0, 200, 400, and 600 W (frequency of 20 kHz) were used to assist thawing. The thawing rate, meat quality, nutrient substances, volatile compounds, and microstructure of the WYM were determined. The results showed that ultrasonic thawing treatment reduced thawing times by 30.95-64.28% compared to control. The meat quality results revealed that the thawing loss, cooking loss, L* and b* values, and pH values decreased significantly while the a* value and cutting force increased significantly (P < 0.05) at the lower 400 W power level compared with the control. In addition, the free amino acid (FAA), mineral, and vitamin (especially water-soluble vitamins) contents were significantly (P < 0.05) increased with the ultrasound treatment. UAT significantly (P < 0.05) increased the content of volatile compounds, an effect that was highest in the UAT-400 W group. Partial least squares discrimination analysis (PLS-DA) showed that 2,4-heptadienal was critical in distinguishing the UAT groups from the control. When the ultrasonic power was lower than 400 W, the muscle cell area was significantly (P < 0.05) increased but decreased when higher power was used. Therefore, UAT improves the thawing efficiency and quality of frozen WYM, particularly at a power level of 400 W, and these findings have potential applications in the meat industry.


Subject(s)
Nutritive Value , Red Meat , Sonication/methods , Animals , Cattle , Freezing
SELECTION OF CITATIONS
SEARCH DETAIL
...